Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112848, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515770

RESUMO

Oligodendrocytes are specialized cells that insulate and support axons with their myelin membrane, allowing proper brain function. Here, we identify lamin A/C (LMNA/C) as essential for transcriptional and functional stability of myelinating oligodendrocytes. We show that LMNA/C levels increase with differentiation of progenitors and that loss of Lmna in differentiated oligodendrocytes profoundly alters their chromatin accessibility and transcriptional signature. Lmna deletion in myelinating glia is compatible with normal developmental myelination. However, altered chromatin accessibility is detected in fully differentiated oligodendrocytes together with increased expression of progenitor genes and decreased levels of lipid-related transcription factors and inner mitochondrial membrane transcripts. These changes are accompanied by altered brain metabolism, lower levels of myelin-related lipids, and altered mitochondrial structure in oligodendrocytes, thereby resulting in myelin thinning and the development of a progressively worsening motor phenotype. Overall, our data identify LMNA/C as essential for maintaining the transcriptional and functional stability of myelinating oligodendrocytes.


Assuntos
Lâmina Nuclear , Transcriptoma , Transcriptoma/genética , Células Cultivadas , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Cromatina/metabolismo
2.
Cytoskeleton (Hoboken) ; 80(7-8): 290-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378242

RESUMO

The formation of axon-enwrapping myelin sheaths by oligodendrocytes in the central nervous system involves the assembly of a scaffolding septin filament comprised of the subunits SEPTIN2, SEPTIN4, SEPTIN7 and SEPTIN8. Conversely, in the peripheral nervous system (PNS), myelin is synthesized by a different cell type termed Schwann cells, and it remained unknown if septins also assemble as a multimer in PNS myelin. According to prior proteome analysis, PNS myelin comprises the subunits SEPTIN2, SEPTIN7, SEPTIN8, SEPTIN9, and SEPTIN11, which localize to the paranodal and abaxonal myelin subcompartments. Here, we use the Cre/loxP-system to delete the Septin9-gene specifically in Schwann cells, causing a markedly reduced abundance of SEPTIN9 in sciatic nerves, implying that Schwann cells are the main cell type expressing SEPTIN9 in the nerve. However, Septin9-deficiency in Schwann cells did not affect the abundance or localization of other septin subunits. In contrast, when deleting the Septin2-gene in Schwann cells the abundance of all relevant septin subunits was markedly reduced, including SEPTIN9. Notably, we did not find evidence that deleting Septin2 or Septin9 in Schwann cells impairs myelin biogenesis, nerve conduction velocity or motor/sensory capabilities, at least at the assessed timepoints. Our data thus show that SEPTIN2 but not SEPTIN9 is required for the formation or stabilization of a septin multimer in PNS myelin in vivo; however, its functional relevance remains to be established.

3.
iScience ; 25(4): 104132, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35434551

RESUMO

Cells elaborate transcriptional programs in response to external signals. In the peripheral nerves, Schwann cells (SC) sort axons of given caliber and start the process of wrapping their membrane around them. We identify Actin-like protein 6a (ACTL6a), part of SWI/SNF chromatin remodeling complex, as critical for the integration of axonal caliber recognition with the transcriptional program of myelination. Nuclear levels of ACTL6A in SC are increased by contact with large caliber axons or nanofibers, and result in the eviction of repressive histone marks to facilitate myelination. Without Actl6a the SC are unable to coordinate caliber recognition and myelin production. Peripheral nerves in knockout mice display defective radial sorting, hypo-myelination of large caliber axons, and redundant myelin around small caliber axons, resulting in a clinical motor phenotype. Overall, this suggests that ACTL6A is a key component of the machinery integrating external signals for proper myelination of the peripheral nerve.

4.
Glia ; 70(2): 321-336, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34687571

RESUMO

The N-myc downstream regulated gene family member 1 (NDRG1) is a gene whose mutation results in peripheral neuropathy with central manifestations. While most of previous studies characterized NDRG1 role in Schwann cells, the detection of central nervous system symptoms and the identification of NDRG1 as a gene silenced in the white matter of multiple sclerosis brains raise the question regarding its role in oligodendrocytes. Here, we show that NDRG1 is enriched in oligodendrocytes and myelin preparations, and we characterize its expression using a novel reporter mouse (TgNdrg1-EGFP). We report NDRG1 expression during developmental myelination and during remyelination after cuprizone-induced demyelination of the adult corpus callosum. The transcriptome of Ndrg1-EGFP+ cells further supports the identification of late myelinating oligodendrocytes, characterized by expression of genes regulating lipid metabolism and bioenergetics. We also generate a lineage specific conditional knockout (Olig1cre/+ ;Ndrg1fl/fl ) line to study its function. Null mice develop normally, and despite similar numbers of progenitor cells as wild type, they have fewer mature oligodendrocytes and lower levels of myelin proteins than controls, thereby suggesting NDRG1 as important for the maintenance of late myelinating oligodendrocytes. In addition, when control and Ndrg1 null mice are subject to cuprizone-induced demyelination, we observe a higher degree of demyelination in the mutants. Together these data identify NDRG1 as an important molecule for adult myelinating oligodendrocytes, whose decreased levels in the normal appearing white matter of human MS brains may result in greater susceptibility of myelin to damage.


Assuntos
Esclerose Múltipla , Bainha de Mielina , Animais , Cuprizona/toxicidade , Família , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
5.
Elife ; 82019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30672734

RESUMO

Myelin serves as an axonal insulator that facilitates rapid nerve conduction along axons. By transmission electron microscopy, a healthy myelin sheath comprises compacted membrane layers spiraling around the cross-sectioned axon. Previously we identified the assembly of septin filaments in the innermost non-compacted myelin layer as one of the latest steps of myelin maturation in the central nervous system (CNS) (Patzig et al., 2016). Here we show that loss of the cytoskeletal adaptor protein anillin (ANLN) from oligodendrocytes disrupts myelin septin assembly, thereby causing the emergence of pathological myelin outfoldings. Since myelin outfoldings are a poorly understood hallmark of myelin disease and brain aging we assessed axon/myelin-units in Anln-mutant mice by focused ion beam-scanning electron microscopy (FIB-SEM); myelin outfoldings were three-dimensionally reconstructed as large sheets of multiple compact membrane layers. We suggest that anillin-dependent assembly of septin filaments scaffolds mature myelin sheaths, facilitating rapid nerve conduction in the healthy CNS.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas Contráteis/fisiologia , Bainha de Mielina/metabolismo , Septinas/metabolismo , Animais , Sistema Nervoso Central/patologia , Proteínas Contráteis/genética , Camundongos , Dobramento de Proteína
6.
Glia ; 67(4): 634-649, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30637801

RESUMO

Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.


Assuntos
Axônios/metabolismo , Sistema Nervoso Central/citologia , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Animais , Axônios/ultraestrutura , Citocinas/genética , Citocinas/metabolismo , Antagonistas de Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Imuno-Histoquímica , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas da Mielina/ultraestrutura , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/ultraestrutura , Bainha de Mielina/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , RNA Mensageiro/metabolismo , Tamoxifeno/farmacologia
7.
Nat Commun ; 9(1): 2840, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026560

RESUMO

Oligodendrocytes (OLs) are the myelin-forming cells of the central nervous system. They are derived from differentiation of oligodendrocyte progenitors through a process requiring cell cycle exit and histone modifications. Here we identify the histone arginine methyl-transferase PRMT5, a molecule catalyzing symmetric methylation of histone H4R3, as critical for developmental myelination. PRMT5 pharmacological inhibition, CRISPR/cas9 targeting, or genetic ablation decrease p53-dependent survival and impair differentiation without affecting proliferation. Conditional ablation of Prmt5 in progenitors results in hypomyelination, reduced survival and differentiation. Decreased histone H4R3 symmetric methylation is followed by increased nuclear acetylation of H4K5, and is rescued by pharmacological inhibition of histone acetyltransferases. Data obtained using purified histones further validate the results obtained in mice and in cultured oligodendrocyte progenitors. Together, these results identify PRMT5 as critical for oligodendrocyte differentiation and developmental myelination by modulating the cross-talk between histone arginine methylation and lysine acetylation.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Células-Tronco/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/citologia , Proteína-Arginina N-Metiltransferases/genética
8.
Glia ; 65(11): 1762-1776, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28836307

RESUMO

Proteolipid protein (PLP) is the most abundant integral membrane protein in compact central nervous system myelin, and null mutations of the PLP1 gene cause spastic paraplegia type 2 (SPG2). SPG2 patients and PLP-deficient mice exhibit only moderate abnormalities of myelin but progressive degeneration of long axons. Since Plp1 gene products are detected in a subset of neurons it has been suggested that the loss of neuronal Plp1 expression could be the cause of the axonal pathology. To test this hypothesis, we created mice with a floxed Plp1 allele for selective Cre-mediated recombination in neurons. We find that recombination of Plp1 in excitatory projection neurons does not cause neuropathology, whereas oligodendroglial targeting of Plp1 is sufficient to cause the entire neurodegenerative spectrum of SPG2 including axonopathy and secondary neuroinflammation. We conclude that PLP-dependent loss of oligodendroglial support is the primary cause of axonal degeneration in SPG2.


Assuntos
Proteína Proteolipídica de Mielina/deficiência , Neurônios/metabolismo , Oligodendroglia/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Fatores Etários , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígenos CD/metabolismo , Axônios/metabolismo , Axônios/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
9.
Elife ; 52016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27504968

RESUMO

Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity.


Assuntos
Sistema Nervoso Central/fisiologia , Proteínas Contráteis/metabolismo , Bainha de Mielina/metabolismo , Condução Nervosa , Septinas/metabolismo , Animais , Sistema Nervoso Central/química , Citoesqueleto/metabolismo , Técnicas de Inativação de Genes , Marcação de Genes , Camundongos , Microscopia Confocal , Microscopia Imunoeletrônica , Fibras Nervosas Mielinizadas/química , Fibras Nervosas Mielinizadas/fisiologia , Multimerização Proteica , Proteoma/análise , Proteômica , Septinas/genética
10.
J Neurosci ; 36(3): 806-13, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791211

RESUMO

Oligodendrocyte progenitors respond to biophysical or mechanical signals, and it has been reported that mechanostimulation modulates cell proliferation, migration, and differentiation. Here we report the effect of three mechanical stimuli on mouse oligodendrocyte progenitor differentiation and identify the molecular components of the linker of nucleoskeleton and cytoskeleton (LINC) complex (i.e., SYNE1) as transducers of mechanical signals to the nucleus, where they modulate the deposition of repressive histone marks and heterochromatin formation. The expression levels of LINC components increased during progenitor differentiation and silencing the Syne1 gene resulted in aberrant histone marks deposition, chromatin reorganization and impaired myelination. We conclude that spatial constraints, via the actin cytoskeleton and LINC complex, mediate nuclear changes in oligodendrocyte progenitors that favor a default pathway of differentiation. Significance statement: It is recognized that oligodendrocyte progenitors are mechanosensitive cells. However, the molecular mechanisms translating mechanical stimuli into oligodendrocyte differentiation remain elusive. This study identifies components of the mechanotransduction pathway in the oligodendrocyte lineage.


Assuntos
Núcleo Celular/metabolismo , Epigênese Genética/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas Nucleares/biossíntese , Oligodendroglia/fisiologia , Animais , Núcleo Celular/genética , Proteínas do Citoesqueleto , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética
11.
Glia ; 64(1): 155-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26393339

RESUMO

Protein zero (P0) is the major structural component of peripheral myelin. Lack of this adhesion protein from Schwann cells causes a severe dysmyelinating neuropathy with secondary axonal degeneration in humans with the neuropathy Dejerine-Sottas syndrome (DSS) and in the corresponding mouse model (P0(null)-mice). In the mammalian CNS, the tetraspan-membrane protein PLP is the major structural myelin constituent and required for the long-term preservation of myelinated axons, which fails in hereditary spastic paraplegia (SPG type-2) and the relevant mouse model (Plp(null)-mice). The Plp-gene is also expressed in Schwann cells but PLP is of very low abundance in normal peripheral myelin; its function has thus remained enigmatic. Here we show that the abundance of PLP but not of other tetraspan myelin proteins is strongly increased in compact peripheral myelin of P0(null)-mice. To determine the functional relevance of PLP expression in the absence of P0, we generated P0(null)*Plp(null)-double-mutant mice. Compared with either single-mutant, P0(null)*Plp(null)-mice display impaired nerve conduction, reduced motor functions, and premature death. At the morphological level, axonal segments were frequently non-myelinated but in a one-to-one relationship with a hypertrophic Schwann cell. Importantly, axonal numbers were reduced in the vital phrenic nerve of P0(null)*Plp(null)-mice. In the absence of P0, thus, PLP also contributes to myelination by Schwann cells and to the preservation of peripheral axons. These data provide a link between the Schwann cell-dependent support of peripheral axons and the oligodendrocyte-dependent support of central axons.


Assuntos
Axônios/metabolismo , Proteína P0 da Mielina/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Nervo Frênico/metabolismo , Nervo Isquiático/metabolismo , Animais , Axônios/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mortalidade Prematura , Atividade Motora/fisiologia , Proteína P0 da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Glicoproteína Associada a Mielina/metabolismo , Condução Nervosa/fisiologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Nervo Frênico/patologia , Nervo Isquiático/patologia
12.
Behav Brain Res ; 277: 254-63, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24768641

RESUMO

The neuronal tetraspan proteins, M6A (Gpm6a) and M6B (Gpm6b), belong to the family of proteolipids that are widely expressed in the brain. We recently reported Gpm6a deficiency as a monogenetic cause of claustrophobia in mice. Its homolog proteolipid, Gpm6b, is ubiquitously expressed in neurons and oligodendrocytes. Gpm6b is involved in neuronal differentiation and myelination. It interacts with the N-terminal domain of the serotonin transporter (SERT) and decreases cell-surface expression of SERT. In the present study, we employed Gpm6b null mutant mice (Gpm6b(-/-)) to search for behavioral functions of Gpm6b. We studied male and female Gpm6b(-/-) mice and their wild-type (WT, Gpm6b(+/+)) littermates in an extensive behavioral test battery. Additionally, we investigated whether Gpm6b(-/-) mice exhibit changes in the behavioral response to a 5-HT2A/C receptor agonist. We found that Gpm6b(-/-) mice display completely normal sensory and motor functions, cognition, as well as social and emotionality-like (anxiety, depression) behaviors. On top of this inconspicuous behavioral profile, Gpm6b(-/-) mice of both genders exhibit a selective impairment in prepulse inhibition of the acoustic startle response. Furthermore, in contrast to WT mice that show the typical locomotion suppression and increase in grooming activity after intraperitoneal administration of DOI [(±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride], Gpm6b(-/-) mice demonstrate a blunted behavioral response to this 5-HT2A/C receptor agonist. To conclude, Gpm6b deficiency impairs sensorimotor gating and modulates the behavioral response to a serotonergic challenge.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Filtro Sensorial/fisiologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Ansiedade/tratamento farmacológico , Encéfalo/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/deficiência , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
13.
Biol Chem ; 395(2): 143-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24047595

RESUMO

The capacity of cytoskeletal septins to mediate diverse cellular processes is related to their ability to assemble as distinct heterooligomers and higher order structures. However, in many cell types the functional relevance of septins is not well understood. This minireview provides a brief overview of our current knowledge about septins in the non-neuronal cells of the vertebrate nervous system, collectively termed 'glial cells', i.e., astrocytes, microglia, oligodendrocytes, and Schwann cells. The dysregulation of septins observed in various models of myelin pathology is discussed with respect to implications for hereditary neuralgic amyotrophy (HNA) caused by mutations of the human SEPT9-gene.


Assuntos
Sistema Nervoso/metabolismo , Neuroglia/metabolismo , Septinas/metabolismo , Animais , Astrócitos/metabolismo , Neurite do Plexo Braquial/metabolismo , Humanos , Microglia/metabolismo , Sistema Nervoso/citologia , Oligodendroglia/metabolismo , Células de Schwann/metabolismo , Septinas/genética
14.
Glia ; 61(11): 1832-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038504

RESUMO

Deficiency of the major constituent of central nervous system (CNS) myelin, proteolipid protein (PLP), causes axonal pathology in spastic paraplegia type-2 patients and in Plp1(null) -mice but is compatible with almost normal myelination. These observations led us to speculate that PLP's role in myelination may be partly compensated for by other tetraspan proteins. Here, we demonstrate that the abundance of the structurally related tetraspanin-2 (TSPAN2) is highly increased in CNS myelin of Plp1(null) -mice. Unexpectedly, Tspan2(null) -mutant mice generated by homologous recombination in embryonic stem cells displayed low-grade activation of astrocytes and microglia in white matter tracts while they were fully myelinated and showed no signs of axonal degeneration. To determine overlapping functions of TSPAN2 and PLP, Tspan2(null) *Plp1(null) double-mutant mice were generated. Strikingly, the activation of astrocytes and microglia was strongly enhanced in Tspan2(null) *Plp1(null) double-mutants compared with either single-mutant, but the levels of dysmyelination and axonal degeneration were not increased. In this model, glial activation is thus unlikely to be caused by axonal pathology, and vice versa does not potentiate axonal degeneration. Our results support the concept that multiple myelin proteins have distinct roles in the long-term preservation of a healthy CNS, rather than in myelination per se.


Assuntos
Axônios/metabolismo , Microglia/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tetraspaninas/metabolismo , Animais , Axônios/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/patologia , Proteínas do Tecido Nervoso/deficiência , Tetraspaninas/deficiência
15.
Cell Mol Life Sci ; 69(17): 2879-94, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22441408

RESUMO

Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.


Assuntos
Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Bainha de Mielina/metabolismo , Animais , Comunicação Celular , Humanos
16.
J Neurosci ; 31(45): 16369-86, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072688

RESUMO

Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia-axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas da Mielina/análise , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteoma/metabolismo , Nervo Isquiático/anatomia & histologia , Animais , Animais Recém-Nascidos , Quimiocinas/análise , Quimiocinas/metabolismo , Biologia Computacional , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Eletroforese em Gel Bidimensional , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peso Molecular , Proteínas da Mielina/classificação , Proteínas da Mielina/genética , Bainha de Mielina/química , Príons/genética , Proteômica/métodos , RNA Mensageiro , Nervo Isquiático/metabolismo , Septinas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tetraspanina 24/análise , Tetraspanina 24/metabolismo
17.
Neuron Glia Biol ; 4(2): 111-27, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19497142

RESUMO

The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.


Assuntos
Sistema Nervoso Central/fisiologia , Evolução Molecular , Bainha de Mielina/fisiologia , Proteolipídeos/genética , Animais , Axônios/fisiologia , Sistema Nervoso Central/metabolismo , Invertebrados/metabolismo , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Filogenia , Estrutura Terciária de Proteína , Proteolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...